REAL TIME ENSEMBLE & DETERMINISTIC WEATHER PREDICTION SYSTEMS

R&D PROJECT

RESEARCH PARTNERS:

> Texas Tech University
> National Oceanic and Atmospheric Administration (NOAA)
> Shell Wind Energy

PROJECT TERM:

> Ongoing

INDUSTRY PROBLEM:

> Critical need to provide probabilistic forecast information essential for decision-making
> Probabilistic forecasts must be at sufficiently high resolution to capture the full range of scales that influence atmospheric events of interest

SOLUTION:

> The TTU weather prediction system is a cutting-edge data assimilation/forecasting system that provides high-resolution forecasts, and associated forecast uncertainty and probabilities, over much of the United States.
> The system combines a state-of-the-art ensemble Kalman filter data assimilation technique with the Weather Research and Forecasting (WRF) atmospheric model on a 864-core computing cluster to produce 48-hr extended probabilistic forecasts at both 12km and 4km grid spacing twice daily.
> The system integrates 42 simultaneous, equally-likely simulations to characterize the inherent uncertainty present in any given forecast.
> The system can be used to guide future wind farm siting since the best locations are where the resource is both plentiful and predictable.
> Forecasting applications include:
 o Air quality
 o Fire weather
 o Road weather
 o Wind power
 o Severe weather

Information referenced from Texas Tech University’s Department of Geosciences